Modelling herd behavior of prey: analysis of a prey-predator model∗

نویسندگان

  • S. P. Bera
  • A. Maiti
  • G. P. Samanta
چکیده

In this paper, a prey-predator model with a social activity of prey population has been analyzed. In some ecological situations, the prey-predator interaction occurs only at the outer surface of a herd formed by prey population. To model this phenomenon, the square root of prey density has been used in the functional response. The basic model is formulated with this modified functional response. A steady-state analysis has been performed. Mathematical analysis including effect of time-delay is presented. Numerical computations are carried out to validate the analytical findings. Biological implications of the analytical and numerical findings are discussed critically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING

In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...

متن کامل

Stability analysis of a fractional order prey-predator system with nonmonotonic functional response

In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...

متن کامل

Dynamical behavior of a stage structured prey-predator model

In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...

متن کامل

Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model

This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...

متن کامل

Prey-Predator System; Having Stable Periodic Orbit

The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.

متن کامل

The Stability of Some Systems of Harvested Lotka-Volterra Predator-Prey Equations

Some scientists are interesting to study in area of harvested ecological modelling. The harvested population dynamics is more realistic than other ecological models. In the present paper, some of the Lotka-Volterra predator-prey models have been considered. In the said models, existing species are harvested by constant or variable growth rates. The behavior of their solutions has been analyzed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015